LETTER

The correlation between solid solubility and its temperature dependence for solutes in aluminium

H. Jones

Received: 26 June 2006 / Accepted: 21 July 2006 / Published online: 19 August 2006 © Springer Science+Business Media, LLC 2006

In a classic paper, Fink and Freche [1] showed linear correlations between logarithms of eutectic concentration relative to solid solubility and reciprocal of temperature T and between logarithm of solid solubility x versus reciprocal of temperature T, all for a limited number of solutes (including, Mg, Cu, Si, Mn, Cr and Ni) in aluminium.

The present purpose is to re-test this latter correlation for the larger number of solutes in aluminium for which assessed data is now available. Table 1 lists the sources and range of this data [1–20] and Fig. 1a plots slope S of log x against 1/T versus log of solubility at T = 800 K (the temperature of reference chosen by Fink and Freche) while Fig. 1b plots the same slope versus the maximum solubility (at the eutectic or peritectic temperature). The open points and full line in Fig. 1 show the original data of Fink and Freche, while the filled points show the data from Table 1. The Table 1 data in Fig. 1a is in good accord with the earlier representation except for the results for Nd, Zr, Cr, Ti and Y which lie at somewhat lower values of S. Al-Zr, Al-Cr and Al-Ti are peritectic systems, while the results for Nd and Y (also Ni) are each based on just three experimental points from single references [19, 21]. The results for Fe are from the piece of work that gives the lowest values of solid solubility and the results for Al-Be show a lot of experimental scatter. With these provisos, the results show a reasonable fit with the correlation which gives

H. Jones (⊠)

$$S = \frac{d(\log x_{800 \,\mathrm{K}})}{d(1/T)} = a \log(x_{800 \,\mathrm{K}}) \tag{1}$$

where $x_{800 \text{ K}}$ is atom fraction and $a = -1180 \pm 30 \text{ K}$ (leaving out the results for Ti, Cr, Zr, Y and Ni).

Where x is known at 800 K, eq. (1) gives an indication of the associated temperature dependence of solid solubility x for eutectic systems based on Al. More commonly, it is the maximum solid solubility x at the eutectic temperature which is known and so Fig. 1b shows the equivalent correlation of S versus log x_{MAX} . Figure 1b shows a similar distribution of points to Fig. 1a, though now with the highly soluble Ag showing a relatively higher value of S than the trend line and, again, Nd, Zr, Cr, Y and Ti showing relatively lower values. Otherwise, the data show a reasonable fit with:

$$S = a \log x_{\text{MAX}} \tag{2}$$

where, again, x_{MAX} is atom fraction and $a = -1430 \pm 40$ K (and again leaving out the results for Ti, Cr, Zr, Y and Ni).

Using the approximation (for sufficiently dilute solutions) [22–24]

$$x = x_0 \exp\left(-\frac{Q}{RT}\right) \tag{3}$$

where Q is the applicable heat of solution, and R is the gas constant

then

$$S = Q/2.303R$$

Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK e-mail: h.jones@sheffield.ac.uk

Table 1 Sources and ranges of solid solubility (x) data for Figs. 1a and b, ranked in decreasing order of maximum solid solubility x_{MAX}

Solute	x _{MAX} , atom fraction	T _{EU} , °C	$x_{800 \text{ K}}$, atom fraction	<i>T</i> -range of <i>x</i> -data, °C	Slope S of log x versus $1/T$, K	Heat of solution <i>Q</i> , kJ/mol	Source of data
Zn	0.67	381	(0.748)	60–374	170	3.3	Murray [2]
Ag	0.235	567	0.050	200-567	1530	29.3	McAlister [3]
Mg	0.189	450	(0.268)	200–449	1090	20.9	Murray [4] Amano et al. [5]
Li	0.137	601	0.115	150-600	740	14.2	Elliott and Shunk [6]
Cu	0.025	548	0.021	200-548	2170	41.6	Murray [7]
Ge	0.020	420	0.0396	177-395	2020	38.7	McAlister and Murray [8]
Si	0.016	577	0.011	200-575	2440	46.7	Murray and McAlister [9]
Ti	0.0078	665*	0.00355	530-660	1940	37.1	Minamoto et al. [10]
Mn	0.0067	658	0.00185	500-654	3110	59.6	McAlister and Murray [11]
							Minamoto et al. [10]
Cr	0.0035	661.5*	0.0014	375-661	2240	53.8	Murray [12]
Sc	0.0023	660.0	0.00055	470-660	3480	66.6	Murray [13]
Be	(0.0015)	644	0.00375	300-645	4100	78.5	Murray and Kahan [14]
Zr	0.00083	660.8*	0.0002	500-661	3200	61.3	Murray et al. [15]
Au	0.0006	650	0.000088	470-650	4720	90.4	Murray et al. [16]
Y	0.0005	639	0.000275	500-620	(1530)	(29.3)	Gschneidner and Calderwood [17]
Fe	0.00025	655	0.000028	450-620	5520	105.7	Lendvai et al. [18]
Ni	0.00023	640	0.000035	500-640	5080	97.3	Fink and Willey [19]
Nd	0.00008	640	0.000014	500-600	(4420)	(84.6)	Gshneidner and Calderwood [20]

*Peritectic

Fig. 1 Slope *S* of log *x* versus 1/T plotted against solid solubility (**a**) x_{800K} at 800 K and (**b**) x_{MAX} at the eutectic or peritectic temperature for solutes in aluminium. Open points are from Fink and Freche [1]. Closed points are from data given in Table 1

System	x_{MAX} , atom fraction	$T_{\rm EU}$, °C	<i>S</i> from eq. (2), K	Associated Q , kJ/mol	Associated x_0 , atom fraction	Ref. to x_{MAX} data	
Al–B Al–Pb	0.000045 0.00020	659.7 658	$6220 \pm 390 \\ 5290 \pm 330$	$\begin{array}{c} 119 \pm 8 \\ 101 \pm 6 \end{array}$	210 97	Duschanek and Rogl [25] Kondo et al. [26]	
Al–Sn	0.00027	598	5100 ± 320	98 ± 6	195	McAlister and Kahan [27]	

Table 2 Use of eq. (2) to determine the temperature dependence of solid solubility from its value at the eutectic temperature

so

$$Q = 2.303RS$$

A knowledge of x at 800 K or the eutectic temperature then allows the pre-factor x_0 to be determined, and hence the dependence of x on temperature. For example, Table 2 tabulates outcomes for the pre-factor x_0 and heat of solution Q for three systems [25–27] for which x_{MAX} only is known, using eq. (2) to define the temperature dependence. Verification of the accuracy of these outcomes awaits experimental determination of the temperature dependence of solid solubility for these systems.

References

- 1. Fink WL, Freche HR (1934) Trans AIMME 111:304
- 2. Murray JL (1983) Bull Alloy Phase Diag 4:55
- 3. McAlister AJ (1987) Idem 8:526
- 4. Murray JL (1982) Internat Met Rev 3:60
- 5. Amano H, Ikeda M, Kohmoto K, Komatsu S-Y (2002) J Jpn Inst Light Met 52:210
- 6. Elliott RP, Shunk FA (1981) Bull Alloy Phase Diag 2:353

- 7. Murray JL (1985) Internat Met Rev 30:211
- 8. McAlister AJ, Murray JL (1984) Bull Alloy Phase Diag 5:341
- 9. Murray JL, McAlister AJ, (1984) Bull Alloy Phase Diag 5:74 10. Minamino Y, Yamane T, Araki H, Takeuchi N, Kang Y-S,
- Miyamotu Y, Okamuto T (1991) Metall Trans A 22A:783
- 11. McAlister AJ, Murray JL (1987) Bull Alloy Phase Diag 8:438
- 12. Murray JL (1998) J Phase Equil 19:368
- 13. Murray JL (1998) J. Phase Equil 19:380
- 14. Murray JL, Kahan DJ (1983) Bull Alloy Phase Diag 4:50
- 15. Murray J, Peruzzi A, Abriata JP (1992) J Phase Equil 13:277
- 16. Murray JL, Okomoto H, Massalski TB (1987) Bull Alloy Phase Diag 8:20
- 17. Gschneidner KA Jr, Calderwood FW (1989) Bull Alloy Phase Diag 10:44
- Lendvai J, Rajkovits Zs, Ungar T, Kovács I (1986) Aluminium 62:443
- 19. Fink WL, Willey LA (1934) Trans AIMME 111:293
- 20. Gschneidner KA Jr, Calderwood FW (1989) Bull Alloy Phase Diag 10:28
- 21. Drits ME, Kadaner ES, Shoa ND (1969) Russ Met 1:113
- 22. Hildebrand J (1936) Solubility of non-electrolytes. Reinhold 23. Zener C (1950) Thermodynamics in physical metallurgy.
- ASM, pp 16–27
- 24. Freedman JF, Nowick AS (1958) Acta Metall 6:176
- 25. Duschanek H, Rogl P (1994) J Phase Equil 15:543
- Kondo I, Senoo M, Takahashi Y, Kotake S, Matsumuro A (1997) J Soc Mat Sci Jpn 46:1314
- 27. McAlister AJ, Kahan DJ (1983) Bull Alloy Phase Diag 4:410